Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.
نویسندگان
چکیده
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.
منابع مشابه
Stereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملForced expression of antizyme abolishes ornithine decarboxylase activity, suppresses cellular levels of polyamines and inhibits cell growth.
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. It is a short-lived protein and negatively regulated by its products, polyamines. Its degradation is accelerated by the binding of antizyme, an ODC-inhibitory protein induced by polyamines. To evaluate the physiological importance of antizyme we examined the effect of forced expression of antizyme on cellular ODC and polya...
متن کاملFeedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells.
Antizyme, a spermidine-induced protein that binds and stimulates ornithine decarboxylase degradation, is now shown also to mediate the rapid feedback inhibition of polyamine uptake into mammalian cells. Using a cell line (HZ7) transfected with truncated antizyme cDNA, and mutant ornithine decarboxylase cell lines, we demonstrate that this newly discovered action of antizyme is distinct from its...
متن کاملRegulation of ornithine decarboxylase activity and polyamine transport by agmatine in rat pulmonary artery endothelial cells.
Agmatine, a product of arginine decarboxylation in mammalian cells, is believed to govern cell polyamines by inducing antizyme, which in turn suppresses ornithine decarboxylase (ODC) activity and polyamine uptake. However, since agmatine is structurally similar to the polyamines, it is possible that it exerts antizyme-independent actions on polyamine regulatory pathways. The present study deter...
متن کاملDiscovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3.
Previous studies with mice overproducing ornithine decarboxylase have demonstrated the importance of polyamine homeostasis for normal mammalian spermatogenesis. The present study introduces a likely key player in the maintenance of proper polyamine homeostasis during spermatogenesis. Antizyme 3 is a paralog of mammalian ornithine decarboxylase antizymes. Like its previously described counterpar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 280 1 شماره
صفحات -
تاریخ انتشار 2001